Navigation

תוכן העניינים
Ejemplos y Explicaciones probabilidad

Ejemplos y Explicaciones probabilidad

Ejemplo 1 – Lanzamiento de una Moneda 200 Veces

Lanzamos una moneda 200 veces y escribimos los resultados (“cara” o “cruz”) por cada lanzamiento.

Resumimos los resultados en la siguiente tabla:

El valor

La Frecuencia (número de veces que se obtuvo cada valor)

La Frecuencia Relativa (real)

La Probabilidad (la frecuencia relativa esperada)

“Cara”

96

48%

50%

“Cruz”

104

52%

50%

Total

200

100%

100%

Observe que dividimos los resultados en dos grupos (“cara” y “cruz”), y examinamos la frecuencia relativa de cada grupo, en comparación con la probabilidad que calculamos anticipadamente para cada grupo. Como se esperaba, la frecuencia relativa es cercana a la probabilidad teórica pero no es idéntica a ella.

Ejemplo 2 – Lanzamiento de una Moneda 1,000 Veces

En este ejemplo, lanzamos la moneda más veces (1,000 veces).

Los resultados obtenidos son demostrados en la siguiente tabla:

El valor

La Frecuencia (número de veces que se obtuvo cada valor)

La Frecuencia Relativa (real)

La Probabilidad (la frecuencia relativa esperada)

“Cara”

510

51%

50%

“Cruz”

490

49%

50%

Total

1.000

100%

100%

La frecuencia relativa ahora es más cercana a la probabilidad teórica que fue en el caso de 200 lanzamientos, pero sigue siendo diferente.

Ejemplo 3 – Lanzamiento de una Moneda 10,000 Veces

En este ejemplo, lanzamos la moneda una gran cantidad de veces (10,000 veces).

Los resultados obtenidos son demostrados en la siguiente tabla:

Si vemos a los tres ejemplos juntos, vemos que ninguno la frecuencia relativa es idéntica a la probabilidad teórica (50% “cara” y 50% “cruz”). A la vez, a medida que el número de lanzamientos aumenta la frecuencia relativa se aproxima a la frecuencia teórica.

Realmente la probabilidad es la frecuencia relativa que esperamos obtener si lanzamos la moneda un número infinito de veces.

Al lanzar un dado, es posible recibir cualquiera de los siguientes seis resultados: 1, 2, 3, 4, 5, 6.

La probabilidad de cada resultado es de 1/6, o 16.6%. Al igual que con la moneda, presentaremos dos ejemplos en los cuales veremos de nuevo que a medida que el número de lanzamientos aumenta, la frecuencia relativa obtenida se aproxima a la probabilidad teórica.

Throwing the Dice-1

 

Ejemplo 1 – Lanzamiento de un Dado 120 Veces

Obtuvimos los siguientes resultados:

El valor

La Frecuencia (número de veces que se obtuvo cada valor)

La Frecuencia Relativa (real)

La Probabilidad (la frecuencia relativa esperada)

1

15

12.5%

16.6%

2

22

18.3%

16.6%

3

26

21.6%

16.6%

4

21

17.5%

16.6%

5

10

8.3%

16.6%

6

26

21.6%

16.6%

Total

120

100%

100%

Ejemplo 2 – Lanzamiento de un Dado 12.000 Veces

Obtuvimos los siguientes resultados:

El valor

La Frecuencia (número de veces que se obtuvo cada valor)

La Frecuencia Relativa (real)

La Probabilidad (la frecuencia relativa esperada)

1

1.950

16.3%

16.6%

2

1.901

15.8%

16.6%

3

2.233

18.6%

16.6%

4

1.942

16.2%

16.6%

5

2.185

18.2%

16.6%

6

1.789

14.9%

16.6%

Total

12.000

100%

100%

En estos dos ejemplos del lanzamiento de un dado, la frecuencia relativa de cada valor no es la misma a la probabilidad teórica, pero a medida que el número de lanzamientos aumenta, la frecuencia relativa se aproxima a la probabilidad teórica.

Probabilidades que no Pueden ser Calculadas por Adelantado

En los ejemplos de la moneda y del dado que discutimos anteriormente, la probabilidad de cada grupo es conocida de antemano.

Por otra parte, si clasificamos a los alumnos del primer grado en EEUU en 100 grupos de estatura, no seremos capaces de calcular la probabilidad de cada uno de aquellos grupos.

En casos como éste, sólo podemos estimar la probabilidad a base de resultados de un muestreo. Vamos a discutir este tema más adelante en el capítulo.

Recommended courses

Go to Top